175 research outputs found

    De Branges spaces and Krein's theory of entire operators

    Full text link
    This work presents a contemporary treatment of Krein's entire operators with deficiency indices (1,1)(1,1) and de Branges' Hilbert spaces of entire functions. Each of these theories played a central role in the research of both renown mathematicians. Remarkably, entire operators and de Branges spaces are intimately connected and the interplay between them has had an impact in both spectral theory and the theory of functions. This work exhibits the interrelation between Krein's and de Branges' theories by means of a functional model and discusses recent developments, giving illustrations of the main objects and applications to the spectral theory of difference and differential operators.Comment: 37 pages, no figures. The abstract was extended. Typographical errors were corrected. The bibliography style was change

    de Branges-Rovnyak spaces: basics and theory

    Full text link
    For SS a contractive analytic operator-valued function on the unit disk D{\mathbb D}, de Branges and Rovnyak associate a Hilbert space of analytic functions H(S){\mathcal H}(S) and related extension space D(S){\mathcal D(S)} consisting of pairs of analytic functions on the unit disk D{\mathbb D}. This survey describes three equivalent formulations (the original geometric de Branges-Rovnyak definition, the Toeplitz operator characterization, and the characterization as a reproducing kernel Hilbert space) of the de Branges-Rovnyak space H(S){\mathcal H}(S), as well as its role as the underlying Hilbert space for the modeling of completely non-isometric Hilbert-space contraction operators. Also examined is the extension of these ideas to handle the modeling of the more general class of completely nonunitary contraction operators, where the more general two-component de Branges-Rovnyak model space D(S){\mathcal D}(S) and associated overlapping spaces play key roles. Connections with other function theory problems and applications are also discussed. More recent applications to a variety of subsequent applications are given in a companion survey article

    The Zero-Removing Property and Lagrange-Type Interpolation Series

    Get PDF
    The classical Kramer sampling theorem, which provides a method for obtaining orthogonal sampling formulas, can be formulated in a more general nonorthogonal setting. In this setting, a challenging problem is to characterize the situations when the obtained nonorthogonal sampling formulas can be expressed as Lagrange-type interpolation series. In this article a necessary and sufficient condition is given in terms of the zero removing property. Roughly speaking, this property concerns the stability of the sampled functions on removing a finite number of their zeros

    Applications of M.G. Krein's Theory of Regular Symmetric Operators to Sampling Theory

    Full text link
    The classical Kramer sampling theorem establishes general conditions that allow the reconstruction of functions by mean of orthogonal sampling formulae. One major task in sampling theory is to find concrete, non trivial realizations of this theorem. In this paper we provide a new approach to this subject on the basis of the M. G. Krein's theory of representation of simple regular symmetric operators having deficiency indices (1,1). We show that the resulting sampling formulae have the form of Lagrange interpolation series. We also characterize the space of functions reconstructible by our sampling formulae. Our construction allows a rigorous treatment of certain ideas proposed recently in quantum gravity.Comment: 15 pages; v2: minor changes in abstract, addition of PACS numbers, changes in some keywords, some few changes in the introduction, correction of the proof of the last theorem, and addition of some comments at the end of the fourth sectio

    Analytic Kramer kernels, Lagrange-type interpolation series and de Branges spaces

    Get PDF
    The classical Kramer sampling theorem provides a method for obtaining orthogonal sampling formulas. In particular, when the involved kernel is analytic in the sampling parameter it can be stated in an abstract setting of reproducing kernel Hilbert spaces of entire functions which includes as a particular case the classical Shannon sampling theory. This abstract setting allows us to obtain a sort of converse result and to characterize when the sampling formula associated with an analytic Kramer kernel can be expressed as a Lagrange-type interpolation series. On the other hand, the de Branges spaces of entire functions satisfy orthogonal sampling formulas which can be written as Lagrange-type interpolation series. In this work some links between all these ideas are established

    On the class SI of J-contractive functions intertwining solutions of linear differential equations

    Full text link
    In the PhD thesis of the second author under the supervision of the third author was defined the class SI of J-contractive functions, depending on a parameter and arising as transfer functions of overdetermined conservative 2D systems invariant in one direction. In this paper we extend and solve in the class SI, a number of problems originally set for the class SC of functions contractive in the open right-half plane, and unitary on the imaginary line with respect to some preassigned signature matrix J. The problems we consider include the Schur algorithm, the partial realization problem and the Nevanlinna-Pick interpolation problem. The arguments rely on a correspondence between elements in a given subclass of SI and elements in SC. Another important tool in the arguments is a new result pertaining to the classical tangential Schur algorithm.Comment: 46 page

    Generalized KdV Equation for Fluid Dynamics and Quantum Algebras

    Full text link
    We generalize the non-linear one-dimensional equation of a fluid layer for any depth and length as an infinite order differential equation for the steady waves. This equation can be written as a q-differential one, with its general solution written as a power series expansion with coefficients satisfying a nonlinear recurrence relation. In the limit of long and shallow water (shallow channels) we reobtain the well known Korteweg-de-Vries equation together with its single-soliton solution.Comment: 17 pages, Latex, PACS: 47.20.Ky, 43.25.Rq, 47.35.+i, 03.40.Kf, 43.25.Fe, 02.20.Tw, MSC: 16W30, 17B37, 81R50, 35Q51, 34B15, 34L30, 76E3

    Theoretical Insights into the Use of Structural Similarity Index In Generative Models and Inferential Autoencoders

    Full text link
    Generative models and inferential autoencoders mostly make use of 2\ell_2 norm in their optimization objectives. In order to generate perceptually better images, this short paper theoretically discusses how to use Structural Similarity Index (SSIM) in generative models and inferential autoencoders. We first review SSIM, SSIM distance metrics, and SSIM kernel. We show that the SSIM kernel is a universal kernel and thus can be used in unconditional and conditional generated moment matching networks. Then, we explain how to use SSIM distance in variational and adversarial autoencoders and unconditional and conditional Generative Adversarial Networks (GANs). Finally, we propose to use SSIM distance rather than 2\ell_2 norm in least squares GAN.Comment: Accepted (to appear) in International Conference on Image Analysis and Recognition (ICIAR) 2020, Springe

    The class of n-entire operators

    Full text link
    We introduce a classification of simple, regular, closed symmetric operators with deficiency indices (1,1) according to a geometric criterion that extends the classical notions of entire operators and entire operators in the generalized sense due to M. G. Krein. We show that these classes of operators have several distinctive properties, some of them related to the spectra of their canonical selfadjoint extensions. In particular, we provide necessary and sufficient conditions on the spectra of two canonical selfadjoint extensions of an operator for it to belong to one of our classes. Our discussion is based on some recent results in the theory of de Branges spaces.Comment: 33 pages. Typos corrected. Changes in the wording of Section 2. References added. Examples added. arXiv admin note: text overlap with arXiv:1104.476

    Schur functions and their realizations in the slice hyperholomorphic setting

    Get PDF
    we start the study of Schur analysis in the quaternionic setting using the theory of slice hyperholomorphic functions. The novelty of our approach is that slice hyperholomorphic functions allows to write realizations in terms of a suitable resolvent, the so called S-resolvent operator and to extend several results that hold in the complex case to the quaternionic case. We discuss reproducing kernels, positive definite functions in this setting and we show how they can be obtained in our setting using the extension operator and the slice regular product. We define Schur multipliers, and find their co-isometric realization in terms of the associated de Branges-Rovnyak space
    corecore